Optimization and Probability in Machine Learning

Neal Parikh

http://nparikh.org

August 19, 2019

Machine learning

- intersection of computer science and statistics
- algorithms that learn from data and/or improve with experience
- roots in AI, but also used in huge variety of other domains
- draws on a number of mathematical areas, but rests in particular on optimization theory and probability theory

• by framing various tasks that don't appear to involve optimization in that way, can bring the optimization toolbox to bear on a wider range of problems in machine learning

Outline

Regularized loss minimization

Latent variables and the EM algorithm

Variational inference

Conclusion

optimization-based framework for learning (parameter estimation)

minimize $l(w) + \lambda r(w)$

- $w \in \mathbf{R}^n$ are the **model parameters** or **weights**
- $l: \mathbf{R}^n \to \mathbf{R}$ is a loss function measuring lack of fit on training data
- $r: \mathbf{R}^n \to \mathbf{R}$ is a **regularizer** measuring model complexity
- $\lambda > 0$ is a **regularization parameter** trading off between the two

if l and r are convex, problem can essentially be solved

- many models fall under this framework, and may or may not be probabilistic in nature
- ridge regression (Tikhonov regularized linear regression)

minimize $||Xw - y||_{2}^{2} + \lambda ||w||_{2}^{2}$

• lasso (sparse linear regression)

minimize
$$||Xw - y||_2^2 + \lambda ||w||_1$$

support vector machine

minimize
$$\sum_{i=1}^{N} (1 - y_i w^T x_i)_+ + \lambda \|w\|_2^2$$

- also subsumes common ways of learning probabilistic models
- maximum likelihood estimation of model p(x)

minimize
$$-\sum_{i=1}^{N} \log p(x_i)$$

- could also model $y \mid x$ and maximize $\sum_i \log p(y_i \mid x_i)$
- includes, e.g., linear regression, generalized linear models, ...
- maximum a posteriori (MAP) estimation (finding posterior mode)

minimize
$$-\sum_{i=1}^{N} \log p(x_i \mid w) - \log p(w)$$

- $w \sim \text{Gaussian}$: Tikhonov regularization
- $w \sim \text{Laplacian}$: ℓ_1/lasso regularization

Naive Bayes

• joint model that factorizes as

$$p(\mathbf{x}, y) = p(y) \prod_{i=1}^{n} p(x_i \mid y)$$

where x_i are words in an email and $y \in \{\text{spam}, \text{ham}\}$

- need to estimate p(y = spam) and p(x = bank | y)
- maximum likelihood estimates have a trivial closed form solution, e.g.:

$$\begin{split} \hat{p}(y = \mathsf{spam}) &= & \frac{\# \text{ spam emails}}{\mathsf{total} \ \# \text{ emails}} \\ \hat{p}(x = \mathsf{bank} \,|\, \mathsf{spam}) &= & \frac{\# \text{ times } x = \mathsf{bank} \text{ in spam mails}}{\# \text{ words in spam emails}} \end{split}$$

Naive Bayes

- ${\ensuremath{\, \bullet }}$ once parameters are fit, want to classify new example $x^{\rm new}$
- compute label posterior

$$p(y = \operatorname{spam} | \mathbf{x}^{\operatorname{new}}) = \frac{p(\mathbf{x}^{\operatorname{new}} | \operatorname{spam}) \cdot p(\operatorname{spam})}{p(\mathbf{x}^{\operatorname{new}})}$$

- pick whichever class has higher posterior probability
- in general, called a (probabilistic) inference problem

Gaussian discriminant analysis

• assume data comes from generative model

$$\begin{array}{rcl} y & \sim & \text{Bernoulli}(\phi) \\ x \mid y = 0 & \sim & \text{N}(\mu_0, \Sigma) \\ x \mid y = 1 & \sim & \text{N}(\mu_1, \Sigma) \end{array}$$

i.e., data comes from one of two Gaussians chosen with a ϕ -coin flip

• estimate $w = (\phi, \mu_k, \Sigma)$ by maximizing

$$\ell(w) = \log \prod_{i=1}^{N} p(x_i, y_i; w)$$

= $\sum_{i=1}^{N} \log p(x_i | y_i; \mu_0, \mu_1, \Sigma) + \sum_{i=1}^{N} \log p(y_i; \phi)$

Gaussian discriminant analysis

Maximum likelihood estimation

maximum likelihood estimates of parameters given by

$$\hat{\phi} = \frac{1}{N} \sum_{i=1}^{N} [y_i = 1]$$

$$\hat{\mu}_k = \frac{\sum_{i=1}^{N} [y_i = k] x_i}{\sum_{i=1}^{N} [y_i = k]}$$

$$\hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{y_i}) (x_i - \mu_{y_i})^T$$

very natural interpretations:

- $\hat{\phi}$ is empirical proportion of positive label in ${\cal D}$
- $\hat{\mu}_k$ is empirical average of x_i with label k
- $\hat{\Sigma}$ is empirical covariance, with variance measured to relevant mean

- subsumes a very wide class of machine learning models
- generative/discriminative, probabilistic/non-probabilistic, ...
- sometimes problem can just be solved in closed form
- sometimes need sophisticated optimization algorithms like L-BFGS, accelerated proximal gradient method, ...
- calculations, or subsequent model use, may involve probability operations

Outline

Regularized loss minimization

Latent variables and the EM algorithm

Variational inference

Conclusion

Mixture of Gaussians

- probabilistic model for clustering / density estimation
- consider data $\mathcal{D} = \{x_1, \ldots, x_N\}$
- generative model

$$z \sim \text{Multinomial}(\phi)$$

 $x \mid z = k \sim \text{N}(\mu_k, \Sigma_k)$

- *i.e.*, each x_i generated by sampling a **unobserved** (hidden, latent) $z_i \in [K]$ and then drawing x_i from the corresponding Gaussian
- presence of these latent variables is the key new wrinkle
- model parameters are ϕ , μ_k , Σ_k

Maximum likelihood estimation

- model parameters are ϕ , μ_k , Σ_k
- as usual, write down likelihood for $w = (\phi, \mu_k, \Sigma_k)$

$$\ell(w) = \sum_{i=1}^{N} \log p(x_i; w)$$
$$= \sum_{i=1}^{N} \log \sum_{z_i=1}^{K} p(x_i \mid z_i) p(z_i)$$

- this function is *nonconvex* due to sum over values of z_i
- can no longer easily solve the relevant optimization problem

Maximum likelihood estimation

• if z_i were known, problem is easy and becomes

$$\ell(w) = \sum_{i=1}^{N} \log p(x_i \,|\, z_i) + \sum_{i=1}^{N} \log p(z_i)$$

• maximizing with respect to ϕ , μ , Σ gives

$$\phi_j = \frac{1}{N} \sum_{i=1}^{N} [z_i = j], \quad \mu_j = \frac{\sum_{i=1}^{N} [z_i = j] x_i}{\sum_{i=1}^{N} [z_i = j]}$$

similar expression for $\boldsymbol{\Sigma}$

• *i.e.*, if z_i were known, nearly identical to maximum likelihood estimates in GDA (with z_i 's as class labels)

• idea: iteratively guess the z_i and then use formulas above:

1 E-step (probability): compute $\rho_{ij} = p(z_i = j | x_i; \theta, \mu, \Sigma)$

2 M-step (optimization): use formulas above with ρ_{ij} in place of $[z_i = j]$

- E-step is an inference task: compute posterior probability of z_i 's, given data and current setting of parameters; 'soft guesses' for values of z_i
- M-step is 'regular' maximum likelihood estimation, but there is uncertainty around the value of the z_i and that's incorporated in estimates
- yields a 'soft' version of k-means for this model

- in general, EM algorithm is standard approach to maximum likelihood estimation with latent variable models
- data $\mathcal{D} = \{x_1, \ldots, x_N\}$
- want to fit model p(x, z) with z hidden
- likelihood is given by

$$\ell(w) = \sum_{i=1}^{N} \log p(x; w) = \sum_{i=1}^{N} \log \sum_{z} p(x, z; w)$$

• often the case that maximum likelihood estimation of x would be easy if z were known, so alternate the two steps

• iteratively lower bound ℓ , then maximize that lower bound

• for each i, let q_i be a distribution over z's

$$\sum_{i=1}^{N} \log p(x_i) = \sum_{i=1}^{N} \log \sum_{z_i} p(x_i, z_i)$$
$$= \sum_{i=1}^{N} \log \sum_{z_i} q_i(z_i) \frac{p(x_i, z_i)}{q_i(z_i)}$$
$$\geq \sum_{i=1}^{N} \sum_{z_i} q_i(z_i) \log \frac{p(x_i, z_i)}{q_i(z_i)}$$

by Jensen's inequality

- previous formula gives lower bound for any q_i; ideally, have the lower bound be tight (inequality holds with equality) for current value of w
- can show that this is the case when $q_i(z_i) = p(z_i | x_i; w)$
- E-step: lower bound ℓ via computing $p(z \mid x)$
- M-step: maximize this lower bound

 $\mathbf{E}_q[\log p(z, x; w)]$

with respect to w

- previous motivation is as a 'majorization-minimization' algorithm
- can also be viewed as coordinate ascent on

$$F(q, w) = \sum_{i=1}^{N} \sum_{z_i} q_i(z_i) \log \frac{p(x_i, z_i; w)}{q_i(z_i)}$$

- E-step: maximization with respect to q
- M-step: maximization with respect to w
- (note: can also be modified for MAP estimation)
- this perspective suggests/justifies many variations

Outline

Regularized loss minimization

Latent variables and the EM algorithm

Variational inference

Conclusion

Inference

comes up in several places:

- using a trained model, *e.g.*, to predict out-of-sample outcomes
- E-step of EM for MLE in partially observed model
- Bayesian learning (work with joint model p(x, z, w) with w random)

trivial in very simple cases, but expensive or intractable in complex models

(note: in some models, like hidden Markov models or Kalman filters, inference can be carried out exactly but requires use of an algorithm)

Variational inference

- let x be observed and z be hidden
- interested in computing the posterior distribution

$$p(z \mid x) = \frac{p(z, x)}{p(x)} = \frac{p(z, x)}{\int_z p(z, x)}$$

- denominator ('evidence') is hard to compute and makes this difficult
- main idea is to pick family Q of distributions over the latent variables indexed by variational parameters

$$q(z \mid \nu)$$

and set ν via optimization to make q close to $p(z \mid x)$

• *i.e.*, turn a probability problem into an optimization problem

Variational inference

• recall following lower bound from EM

 $\log p(x) \ge L(q) = \mathbf{E}_q[\log p(x, z)] - \mathbf{E}_q[\log q(z)]$

where RHS is called the evidence lower bound

• here, choose a parametrized family of distributions for q such that these expectations are computable, then maximize lower bound L with respect to these 'variational parameters'

can show that

$$\mathrm{KL}(q(z) \parallel p(z \mid x)) + L(q) = \log p(x)$$

- minimizing KL divergence is equivalent to maximizing L, plus obtain a lower bound on $\log p(x)$

Mean field family

• in mean field variational inference, assume that the family factorizes

$$q(z_1,\ldots,z_m) = \prod_{j=1}^m q(z_j)$$

i.e., all variables are independent

- typically, this family does not contain the true posterior because the hidden variables are dependent (and these dependencies are what make the posterior difficult to work with)
- in 'coordinate ascent variational inference', iteratively optimize each variational distribution while holding others fixed
- computations end up being simple when relevant parts of original model are exponential family distributions

Additional topics

variational EM

– use variational inference to compute approximate posterior $p(z \,|\, x)$ in E-step, *i.e.*, do inexact maximization of F with respect to q

• variational Bayes

- parameters w are random and model is p(x, z, w)
- use lower bound

$$\log p(x) = \iint p(x, z, w) \, dz \, dw \ge \mathbf{E}[\log p(x, z, w)] - \mathbf{E}[\log q(z, w)]$$

with factorized approximation q(z,w)=q(z)q(w) and do alternating maximization w.r.t. $z,\,w$

- yields EM-like algorithm sometimes called 'variational Bayesian EM'
- stochastic variational inference: use stochastic optimization to scale optimization carried out in variational inference

Latent Dirichlet Allocation

- words are multinomial random variables w
- documents are sequences of N words $\mathbf{w} = (w_1, \dots, w_N)$
- topics are (multinomial) distributions over words
- model document as a random mixture θ over K latent topics
- from an unlabeled collection of documents, infer
 - per-word topic assignments in each document
 - per-document topic proportions
 - per-corpus topic distributions

Latent Dirichlet Allocation

Topic models

models for discovering thematic structure in document collections

joint distribution of topic mixture θ , topic distributions z, and words w is:

$$p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta) = p(\theta \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \theta) p(w_n \mid z_n, \beta)$$

goal: fit parameters and compute posterior $p(\theta, \mathbf{z} | \mathbf{w}, \alpha, \beta)$

A 100 topic model of Science 1980-2000

sound	quantum	brain	computer	ice
speech	laser	memory	data	climate
acoustic	light	human	information	ocean
language	optical	visual	problem	sea
sounds	electron	cognitive	computers	temperature
stars	research	materials	fossil	volcanic
universe	national	organic	species	years
σalavies			1	<i>c</i> .
Balavica	science	molecules	evolution	fig
astronomers	new	molecules molecular	evolution birds	deposits

Topic proportions in documents

4 ö

A mysterious mechanism

Desperiment law inter from the start from the correlation fully and the correlation fully the start for the sealer to deve sea for the 2 şP 6 - -

See changes. Some drops in sea level (insu-iety commisse with core unconformities (col-ored basis, center) and with rapid changes in

GENOME MEETING

Seeking Life's Bare (Genetic) Necessities

in a sample preside and esti-mated that for this organism, NV power are please to de the ph-bat that ary hing short of 100 wouldn't be reached

¹ Genome Mapping and Bergiotoc Ing. Celd Spring Hober, New York, May 8 to 12.

ecopt Excess pits not tax to wrapped all its meanings-Richard A. Kerr

See a compare lawore consequence of the source of the s

Albesh the ranked of a transfer of the palaries

Stripping down. Computer analysis yields an est-mass of the minimum modern and ancient genomes

Topics

Model Evolution of Topics over Time

Visualizing Trends Within Topics

"Theoretical Physics"

"Neuroscience"

Model Connections Between Topics

Matching Words and Pictures

Matching Words and Pictures

True caption market people Corr-LDA people market pattern textile display

True caption scotland water Corr-LDA scotland water flowers hills tree

True caption bridge sky water Corr-LDA sky water buildings people mountain

True caption sky tree water Corr-LDA tree water sky people buildings

True caption birds tree Corr-LDA birds nest leaves branch tree

True caption fish reefs water Corr-LDA fish water ocean tree coral

True caption mountain sky tree water Corr-LDA sky water tree mountain people

True caption clouds jet plane Corr-LDA sky plane jet mountain clouds

Variational EM for LDA

- computing evidence $p(\mathbf{w} \mid \alpha, \beta)$ is intractable, but evidence lower bound $E_q[\log p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta)] - E_q[\log q(\theta, \mathbf{z} \mid \gamma, \phi)]$ gives lower bound on $\log p(\mathbf{w} \mid \alpha, \beta)$
- plug in form of p and use family of approximate posteriors given by

$$q(\theta, \mathbf{z} \mid \gamma, \phi) = q(\theta \mid \gamma) \prod_{n=1}^{N} q(z_n \mid \phi_n)$$

where γ is a variational Dirichlet parameter and ϕ_n are variational multinomial parameters

- variational E-step: maximize lower bound with respect to γ and ϕ_n via alternating maximization (both simple closed form expressions)
- M-step: maximize with respect to hyperparameters α (simple numerical method), β (closed form)

Outline

Regularized loss minimization

Latent variables and the EM algorithm

Variational inference

Conclusion

Conclusions

- interactions of optimization and probability in machine learning
- using probabilistic structure can ease optimization
- framing probabilistic computations in variational form can help bring full optimization toolbox to bear on wider range of problems
- can lead to fast and scalable algorithms that enable working with very complex probabilistic models on huge datasets, beyond the reach of other methods
- many analogies between probabilistic methods (*e.g.*, Gibbs sampling) and optimization-based methods (*e.g.*, coordinate ascent)

Acknowledgements

- David Blei & collaborators
- Michael Jordan & collaborators
- Andrew Ng (diagrams)