
1

APPLYING SOFTWARE ENGINEERING 
PRINCIPLES TO POLICY DEVELOPMENT

Neal Parikh
Ginny Fahs
Brandie Nonnecke

Test-Driven 
Development for 
Technology Policy



3

Executive Summary
The design of rockets and space shuttles has been one of the chief science and 

engineering achievements of the United States and all of humankind. An un-

derappreciated aspect of these inspiring projects is the design and engineer-

ing of the software used to operate the rockets. Every time a shuttle fires up, a 

multi-billion dollar piece of equipment, the lives of astronauts, and the dreams 

of a nation all depend on the rocket’s software working perfectly. This software 

cannot be tweaked after the fact if it does not work as intended — it has one shot, 

the first time it is used, to execute flawlessly. 

It was in this demanding environment that the field of “software engineering” was 

born. The term, coined by the MIT mathematician Margaret Hamilton in the 1960s 

when working on the Apollo missions, refers to the subfield of computer science 

concerned with how best to create high-quality software.1 “Quality” can refer to 

many things in the context of software, but at the very least, the software must do 

what it was actually intended to do and should not behave in unexpected ways.

While this standard may seem straightforward on the surface, it is difficult to 

achieve. Software even close to the quality used in space missions is the excep-

tion; even major tech companies see features fail multiple times per day. De-

cades of work in software engineering have produced tools that reliably improve 

the quality of the software that engineers produce. Many of these are process or 

project management innovations, not technical tools, and have proliferated in 

the past twenty years to become standard in the software industry.2

Like software, technology policy frequently does not work as intended: it does 

not fully address the issue it is concerned with or it has negative unintended 

consequences. Many people from the policy world acknowledge this problem; it 

was one of the issues that prompted the creation of the Aspen Tech Policy Hub, 

where we conducted this work. We believe that some of the difficulties in craft-

ing good technology policy can be mitigated by adapting what are now widely 

accepted ideas from the field of software engineering. Developing software was 

once as ad-hoc and error-prone as technology policy development often is now, 

but the policy process can and should evolve just as the software development 

process did.

The general idea of incorporating engineering thinking and methods into tech 

policy development and implementation is not new; it has been championed and 

successfully used in government as recently as the Obama administration.3 Jen-

nifer Pahlka, founder of Code for America and a former Deputy U.S. Chief Tech-

nology Officer, wrote that tech’s “user-centered, iterative, data-driven prac-

tices can work on policies themselves, and eventually on our laws.”4 Describing Cover photo by Etienne Boulanger on Unsplash

https://www.aspentechpolicyhub.org/
https://www.codeforamerica.org/


TE
ST

-D
R

IV
EN

 D
EV

EL
O

PM
EN

T 
FO

R
 T

EC
H

N
O

LO
G

Y 
PO

LI
C

Y

54

her experiences working with technologists and the methods they use, Cecilia 

Muñoz, former head of the Domestic Policy Council in the Obama administra-

tion, called the use of software engineering principles in project management 

“the most transformative thing I’ve seen in my eight years in government.”5

Pahlka and Muñoz were primarily concerned with the effective implementation 

or delivery of an existing policy, while our work is concerned with improving 

the process of technology policymaking — and, in turn, tech policy itself. Our 

main goal is to help policymakers produce technology policy that is “robust,” 

meaning that it actually addresses the issue they are trying to address and that 

potential unintended consequences have been considered. We advocate using a 

particular engineering methodology called “test-driven development” for the 

development of technology policy, broadly defined to include corporate policy; 

federal, state, and local legislation; and other government functions.

Test-driven development does not require the use of any engineering tools or 

software code; rather, it is a process that any policymaker can follow. 

This short guide explains software testing and test-driven development; shows how 

concepts from software testing can be adapted to the policymaking process; illus-

trates what this process might look like on sample technology legislation; and offers 

guidelines to help policymakers apply this method to their own policy projects.

What is Software Testing?
To write complex software, engineers break down a program into smaller com-

ponents. For example, consider an engineer developing a website that includes a 

signup form that lets a new user register an account.  One of the elements of this 

form may be a field asking for the user’s phone number.

For each element of a website, engineers write tests to assert that the code does 

what it is supposed to do. In the case of the phone number field, the tests would 

consist of entering a range of potential inputs that should or should not be ac-

cepted by the form. Coming up with these tests involves brainstorming possible 

phone numbers that a user might try to submit through the form and deciding 

whether they should or should not be accepted. Each test is implemented as a 

small piece of code.

For example, the engineer might want to test that the form accepts both “(650) 

723-2300” and “650-723-2300” in the phone number field. The engineer may 

also decide that the form should reject “911”, a real US phone number but one 

that is not valid for a user account on this website; “+44-20-7925-0918”, be-

cause the company does not allow international signups yet; and “ABCDEF,” be-

cause it is not a number. If the engineer were designing a different product, like 

the phone app on an iPhone, it would be important to ensure that the software 

allows 911 rather than rejects it.

What is Test-Driven Development?
Test-driven development (TDD) is an approach to software testing that (coun-

terintuitively) advises writing tests first, then writing code for the actual pro-

gram such that the code satisfies the requirements laid out in the test.6 To run 

the tests, engineers use testing software, which automatically plugs test data 

into the program and determines whether the program accepts or rejects it as 

expected. If all the tests pass, the engineer has more confidence that the code is 

written correctly.

Code is general and abstract; tests are specific examples. For example, the code 

to satisfy the tests above may accept any input matching the patterns “(DDD) 

DDD-DDDD” or “DDD-DDD-DDDD”, where D represents any digit. This would 

allow someone to sign up with the number “(212) 555-1234,” for instance. 

Let’s pretend the engineer who is coding the form now wants to update the 

website to add support for users in the United Kingdom. He or she would start 

by changing the existing “+44-20-7925-0918” test, which originally said that 

Photo by Tine Ivanič on UnsplashPhoto by Tine Ivanič on Unsplash



TE
ST

-D
R

IV
EN

 D
EV

EL
O

PM
EN

T 
FO

R
 T

EC
H

N
O

LO
G

Y 
PO

LI
C

Y

76

such a phone number should be rejected, to determine that the number should 

work in the program. The engineer would then add additional tests for UK num-

bers to codify what types of numbers the form should allow and disallow (for ex-

ample, the engineer might still want the form to reject 999, the UK’s 911 equiv-

alent). Then, the team would update the code for the signup form accordingly, 

and rerun all the tests for both US and UK numbers. This system would ensure 

that, in the process of adding support for users signing up with UK numbers, the 

updated code does not inadvertently break its previous support for signing up US 

numbers. This process is summarized below.

Figure 1: Basic Test-Driven Development Flow

There are a few key aspects of the TDD process:

 � While it can feel counterintuitive to begin with specific examples rather than 

writing code itself, this ensures that the requirements for the code are clear 

and agreed upon up front.

 � It is important to think about what the code should not accept, in addition to 

what it should accept.

 � Software testing requires creativity, and there is no single recipe for coming 

up with tests. 

 � Spending any amount of time brainstorming diverse tests like “911,” UK 

numbers, and “ABCDEF” before beginning the actual coding helps ensure 

that the resulting code is better written earlier in the process. Disagreements 

about how the code should behave can be discussed up front through the use 

of the chosen examples.

 � Test suites grow over time and become increasingly robust. It can expedite 

the test development process to take tests from one setting and reuse them 

in another. For example, if the engineer working on the registration form 

later writes an iPhone app that also needs to accept phone numbers, the en-

gineer could reuse many of the tests that were already produced, while add-

ing new tests specific to the app.

Tests can be as sophisticated and creative as necessary for the given situation. 

A ride-hailing company like Uber or Lyft might have tests to ensure that a pas-

senger is never matched with multiple cars at once; Google or Apple may want to 

ensure that driving routes they suggest in their maps never vary in duration by 

more than one hour; or an e-commerce company like Amazon may have tests to 

ensure that shipping fees are correctly calculated based on different geographic 

locations. Once tests are written and deployed, engineers can be confident that 

they are not introducing certain types of bugs when making changes or adding 

new features.

Photo by Laimannung on Unsplash

Photo by Patrick Shopfling on Unsplash

1 | WRITE TEST

2 | REWRITE CODE

3 | RUN TESTS

Test Passes? More Cases?

SHIP

CODE



TE
ST

-D
R

IV
EN

 D
EV

EL
O

PM
EN

T 
FO

R
 T

EC
H

N
O

LO
G

Y 
PO

LI
C

Y

8

Test-Driven Development for 
Policymaking
These concepts from software testing can be adapted to the policy context as follows:

 � A “test” is a snippet of text or other content in plain English that describes a 

given situation or example the policy is (or is not) supposed to address.

 � The “code” being tested is the policy language being developed. This may be 

formal legal or legislative language or more informal language used earlier 

in the policymaking process.

 � “Running the tests” involves manually looking through a collection of tests 

(a “test suite”) and comparing it to the policy language to see if the current 

version of the policy satisfies the requirements codified by the tests.

The iterative process of TDD is the same when applied to technology policy: pol-

icymakers should begin by brainstorming and agreeing on tests that indicate 

what the policy should or should not do, and then crafting policy language to 

satisfy the agreed-upon requirements.

Photo by Etienne Boulanger on Unsplash

STATE

the intent of the 

policy

BRAINSTORM

hypothetical and real situations 

the policy might inEuence

WRITE

down each situation as a 

test case

StepÃÅÄÃStep ÆroÈess Example: Customer Support

ASK

of each test: How would the 

policy apply in this situation?

REFLECT

on how to ad�ust the policy to 

better capture your intention

REFISE

the polic2

accordingly

REÆEAT

the test until implementation 

adequately resembles intent

“The policy should require 

platforms to respond to support 

requests within 24 hours.”

“�hat types of companies 

will this policy affect once 

implemented?”

“This policy would affect
:

Twitter, Instagram
,

startups with two employees”

“The policy would require startups 

with two employees to respond to 

support requests within 24 hours”

“A two-person team may not 

have capacity to respond to 

support requests this quickly”

“�hat if I limit the policy 

to platforms with over 

one billion users?

“Now Instagram would be 

included but Twitter would not. 

How can I ad�ust again?”

Figure 2: Test-Driven Development for Policy - A Step-By-Step Guide



TE
ST

-D
R

IV
EN

 D
EV

EL
O

PM
EN

T 
FO

R
 T

EC
H

N
O

LO
G

Y 
PO

LI
C

Y

1110

In brainstorming tests, it can help to conduct research or consult with domain 

experts to help generate tests for new policies. Incorporating this expertise into 

the policymaking process is a key benefit of TDD. For example, the Princeton 

Web Transparency and Accountability Project has completed research on dark 

patterns and hosts a website with dozens of examples of dark patterns already 

organized into categories.9 These examples, or some selected subset, could be 

incorporated as part of the test suite.

Benefits. Using TDD for tech policymaking has several key benefits:

 � TDD helps ensure that policymakers agree on concrete examples before 

crafting general language.

 � TDD enables more experts to participate in forging policy that affects tech-

nology, as it is easier for technologists and domain experts to contribute and 

analyze tests than to engage with legalistic policy language.

 � Policymakers can reuse and share test cases over time, adding efficiency to 

the process of drafting new laws and regulations.

 � TDD does not require the use of any specialized tools or code.

 � A single member of the policy team can begin using TDD effectively without 

requiring participation from the entire team. The practice will likely spread 

among the rest of the team as it proves useful.

 � TDD can be used flexibly. A policy team can decide to use TDD for only a part 

of a given policy, meaning that it can help improve policy for that subset 

without limiting how the rest of the policy is put together. 

 � As in software, TDD can support the development of more robust policy-

making even if the test suite is not perfectly comprehensive. For instance, in 

the phone number example above, the engineer may fail to consider wheth-

er users should be able to sign up with toll-free numbers. Even if the form 

inadvertently accepts such numbers, it will still be a better form than if the 

other tests had not been used.

 � Clearly articulated tests can help chart direction for policy pilots or other 

evaluation methodologies that help ensure the policy’s implementation is 

effective.

How to write tests. As with software, writing tests for policymaking requires cre-

ativity in brainstorming, and there is no simple recipe to follow. However, there 

are some guidelines and prompts that policymakers can follow. Below, we list a 

set of ten “test categories,” along with conceptual questions that a policymaker 

can ask herself to arrive at sample tests.

Example: Dark Patterns. “Dark patterns” are manipulative designs used in web-

sites, ads, and other software that attempt to deceive users into clicking on, buy-

ing, or signing up for something that they don’t want. The DETOUR Act7 was in-

troduced in the 116th Congress to try to ban the use of dark patterns by so-called 

“large online operators,” websites like Facebook or Twitter that have more than 

100 million monthly active users.8 

Imagine a staff member in Congress is seeking to draft new legislation similar 

to the DETOUR Act to ban the use of dark patterns. The first set of tests the staff 

member would devise are relatively obvious: they are specific examples of both 

dark patterns that the bill should ban and legitimate marketing or design prac-

tices that the staff member wants to ensure the bill does not ban (see Figure 3). 

Even these few simple examples bring clarity to the goal of the legislation and 

how the policy language should be drafted to achieve the goals of the Act while 

not being so broad as to prevent legitimate marketing tactics, such as standard 

banner ads. 

Figure 3: Dark Pattern Examples



TE
ST

-D
R

IV
EN

 D
EV

EL
O

PM
EN

T 
FO

R
 T

EC
H

N
O

LO
G

Y 
PO

LI
C

Y

1312

Policymakers can come up with their own test categories, and through experience, 

they will get a sense of the types of tests and test categories that tend to be most 

helpful and relevant to particular tech policy areas. We recommend beginning 

with the most concrete test categories, such as Numeric Thresholds, Subcategory, 

Excluded Entities, and Jargon, as it is easiest to envision how to use them.

Standard office software, like a shared spreadsheet or document, can be used to 

store the tests. The team member responsible for running the tests can simply 

open the test suite and the policy language and compare them side-by-side, an-

notating as needed (e.g., commenting that a particular sentence or passage may 

cause test 13 to fail). (See Appendix A for a sample worksheet designed to guide a 

technology policymaker through the TDD process.)

Team structure. While individuals can use TDD effectively, engaging a larger 

team can make the method even more powerful. Many strategies are available 

for structuring teams to test policies: 

 � Red teaming. Playing the role of devil’s advocate in the policymaking pro-

cess, a “red team” is an independent group tasked with challenging a sys-

tem, often adversarially, to improve its effectiveness. Some large software 

companies use red teams by having one team within the organization re-

sponsible for writing tests and another team responsible for writing code. 

The natural competition between the test writers and code writers improves 

the reliability of the finished product. Red teaming can be applied to pol-

icymaking by appointing different people to be policy writers and policy 

testers, and having the two teams iterate on their work until the policy and 

tests are both robust. Red teaming has already been used in other parts of the 

policymaking process, especially for security policy.10

 � Including outside expertise. TDD makes it easy for technologists, domain 

experts, and committees concerned with an issue to analyze or contribute 

tests, rather than policy language. Tests are often easier for experts to parse, 

especially those who do not work in policy on a full-time basis. Allowing ex-

perts to comment on and analyze draft tests can increase buy-in and confi-

dence from those most informed about an issue.

 � Engaging a wider range of voices. Policies often have unintended consequenc-

es because the policymaking process does not include a sufficiently wide 

range of affected stakeholders. In the case of technology policy, this could 

include everyone from the rank-and-file engineers in charge of implement-

ing a policy at a software company to vulnerable populations who may be 

directly or indirectly affected by the policy. Using tests to invite such people 

to participate in the policy’s creation will help produce more robust policy.

Figure 4: Examples of Tests

Test Category Questions Test Examples

Numeric 
Thresholds

 � How does the policy change 

as numbers in the policy are 

adjusted? 

 � What happens to entities that 

pass in/out of the threshold?

 � Covering online platforms with 

over 1M vs 100M vs 1B active 

users

Subcategory  � What are all the distinct-

subcategories of a category 

referenced in the policy?

 � For content moderation policy, 

nudity could include pornogra-

phy, historical photos, photo-

journalism, nudes in art

Valid  
Practices

 � If some behavior is being 

banned, what is some similar 

but allowed behavior?

 � Consider valid examples of 

online marketing or benign 

A/B testing in addition to dark 

patterns

Extreme  
Scenario

 � What are the failure modes of 

the policy under extreme or 

worst case scenarios?

 � Making it impossible to treat 

any political group differently 

on platform makes it impossi-

ble to ban Nazis

Jargon  � How do different people 

(engineers, domain experts, 

laypeople) interpret special 

jargon in the policy?

 � DETOUR Act includes term “be-

havioral experiment”, which 

could be interpreted different-

ly by engineers, users, social 

scientists

Excluded  
Entities

 � Are there entities included/

excluded who do/don’t do the 

behavior in question?

 � Google doesn’t use “fake hair” 

dark pattern

 � Ticketmaster uses dark patterns 

but isn’t included

Stakeholder 
Impact

 � Who are all the entities affect-

ed by this policy, especially 

those not directly referenced?

 � Hackers vs security researchers

 � Malicious academic (Cambridge 

Analytica) vs benign academic

Business  
Incentives

 � What new incentives emerge 

for existing businesses?

 � What new business models 

might spring from this policy?

 � Requiring both large and small 

companies to implement the 

same privacy features would 

inhibit small company growth

Demographics  � Does the policy make sense as 

you vary the attributes of the 

people/ companies covered?

 � Demographics (age, gender, 

income, location), access to 

internet

 � Market cap, funding stage, sector

Lawsuits  � What potential litigation 

based on this language can 

you anticipate?

 � ACLU sued state of Arizona over 

law banning ‘revenge porn’ that 

inadvertently banned use of his-

torical and newsworthy images



TE
ST

-D
R

IV
EN

 D
EV

EL
O

PM
EN

T 
FO

R
 T

EC
H

N
O

LO
G

Y 
PO

LI
C

Y

1514

About the Authors
Neal Parikh is Co-Founder and former Chief Technology Officer of SevenFifty, 

a technology company based in New York. He holds a Ph.D. in computer science 

from Stanford University, focused on artificial intelligence and optimization. 

He previously taught machine learning at Cornell Tech and worked at Goldman 

Sachs in New York.

Ginny Fahs is a software engineer and social entrepreneur based in San Francis-

co. She is the Co-Founder and Executive Director of #MovingForward,a global 

social movement that has inspired over 100 venture capital firms to write exter-

nal harassment and discrimination policies. Formerly she worked as a software 

engineer at Uber. She holds a degree in American History & Literature from Har-

vard University.

Brandie Nonnecke is Founding Director of the CITRIS Policy Lab and Co-Di-

rector of the CITRIS Tech for Social Good Program at the Center for Information 

Technology Research in the Interest of Society (CITRIS) and the Banatao Insti-

tute, headquartered at UC Berkeley. She is a Fellow at the World Economic Forum, 

where she serves on the Council on the Future of the Digital Economy and Society.

Acknowledgements
We would like to thank Chris Riley, Joe Hall, Betsy Cooper, Maitreyi Sistla, Ryan 

Olson, Cori Zarek, Ryan Calo, Zvika Krieger, and Nicole Tisdale for feedback and 

assistance with this project.

Conclusion
Test-driven development can be adapted from the field of software engineering 

to make the tech policymaking process more robust. Tests written as snippets of 

text can help align policymakers around concrete examples that proposed tech-

nology legislation should and should not influence, and can expand the exper-

tise involved in crafting new tech policy by engaging experts from industry and 

academia. Furthermore, tests can be recycled, shared, and extended over time as 

tech policy matures. The flexibility of test-driven development principles will 

improve policymakers’ foresight and ease the effective implementation of new 

technology policy.

Photo by Daryan Shamkhali on Unsplash

Photo by Scott Webb on Unsplash



TE
ST

-D
R

IV
EN

 D
EV

EL
O

PM
EN

T 
FO

R
 T

EC
H

N
O

LO
G

Y 
PO

LI
C

Y

1716

Endnotes

1 A.J.S. Rayl, “NASA Engineers and Scientists: Transforming Dreams Into Reality,” NASA, https://

www.nasa.gov/50th/50th_magazine/scientists.html, (accessed October 25, 2019).

2 Kent Beck, Test-Driven Development By Example (Boston: Addison-Wesley, 2002), 10.

3 Tom Kalil, “Funding What Works: The Importance of Low-Cost Randomized Controlled Trials,” The 

President Barack Obama White House Blog, https://obamawhitehouse.archives.gov/blog/2014/07/09/

funding-what-works-importance-low-cost-randomized-controlled-trials (July 9, 2014); Jen-

nifer Pahlka, “Delivery-Driven Government,” Code for America Blog, https://medium.com/

code-for-america/delivery-driven-government-67e698c57c7b (May 30, 2018).

4 Jennifer Pahlka, “Beyond Tech: Policymaking in a Digital Age,” Code for America Blog, https://medium.

com/code-for-america/beyond-tech-policymaking-in-a-digital-age-2776b9a17b6 (March 30, 2017). 

5 Pahlka, “Beyond Tech,” supra note 4.

6 Beck, supra note 2.

7 U.S. Congress, Senate, Deceptive Experiences To Online Users Reduction Act (DETOUR Act) of 2019, 

S 1084, 116th Congress, 1st session, introduced in Senate April 9, 2019, https://www.congress.gov/

bill/116th-congress/senate-bill/1084/text.

8 Our purposes here are purely illustrative, not to analyze this specific legislation, so we merely para-

phrase the goal and language of the bill rather than attempt to fully reflect everything in it.

9 Arunesh Mathur, et al., “Dark Patterns at Scale: Findings from a Crawl of 11K Shopping Websites,” 

Proceedings of ACM Human-Computer Interaction 3, CSCW, Article 81,  https://arxiv.org/pdf/1907.07032.

pdf (September 20, 2019).

10 Micah Zenko, “Red Team: How to Succeed by Thinking Like the Enemy,” Council on Foreign Relations Book 

Launch, https://www.cfr.org/event/red-team-how-succeed-thinking-enemy, (November 5, 2015).

Appendix A: Worksheet for Test-Driven Development

Test-Driven Development for Policy

STATE

the intent of the 

policy

BRAINSTORM

hypothetical and real situations 

the policy �i�ht in�uence

WRITE

down each situation as a 

test case

Step-by-Step Process

Worksheet

ASK

of each test: How would the 

policy apply in this situation?

REFLECT

on how to ad%ust the policy to 

better capture your intention

REK�Sy

the policy

accordingly

REPEAT

the test until i�ple�entation 

adeWuately rese�bles intent

https://www.nasa.gov/50th/50th_magazine/scientists.html
https://www.nasa.gov/50th/50th_magazine/scientists.html
https://obamawhitehouse.archives.gov/blog/2014/07/09/funding-what-works-importance-low-cost-randomized-controlled-trials
https://obamawhitehouse.archives.gov/blog/2014/07/09/funding-what-works-importance-low-cost-randomized-controlled-trials
https://medium.com/code-for-america/delivery-driven-government-67e698c57c7b
https://medium.com/code-for-america/delivery-driven-government-67e698c57c7b
https://medium.com/code-for-america/beyond-tech-policymaking-in-a-digital-age-2776b9a17b6
https://medium.com/code-for-america/beyond-tech-policymaking-in-a-digital-age-2776b9a17b6
https://www.congress.gov/bill/116th-congress/senate-bill/1084/text
https://www.congress.gov/bill/116th-congress/senate-bill/1084/text
https://arxiv.org/pdf/1907.07032.pdf
https://arxiv.org/pdf/1907.07032.pdf
https://www.cfr.org/event/red-team-how-succeed-thinking-enemy





	_GoBack

