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Instructions. Do not refer to any outside sources to complete this assignment, in accordance with
the honor code. If you discussed any problems with other students, indicate that in your solutions.

1. Weighted least squares. In least squares, the objective to be minimized is

‖Xw − y‖22 =
N
∑

i=1

(wTxi − yi)
2,

where xTi are the rows of X and the model parameters w ∈ Rn is the optimization variable.
In weighted least squares, we instead minimize the objective

m
∑

i=1

λi(w
Txi − yi)

2,

where λi are fixed positive weights. The weights allow assigning a different amount of emphasis
on different components of the residual vector.

(a) Show that the weighted least squares objective can be expressed as ‖D(Xw−y)‖22 for an
appropriate diagonal matrix D. This allows solving the weighted least squares problem
as a standard least squares problem by minimizing ‖Uw − v‖22, where U = DX and
v = Dy.

(b) Show that when X has linearly independent columns, so does U .

(c) The least squares approximate solution is given by ŵ = (XTX)−1XT y. Give a similar
formula for the solution of the weighted least squares problem.

Hint. You may want to use the matrix Λ = diag(λ) in your formula.

(d) Consider a training set ofN independent examples (xi, yi) in which the yi’s were observed
with differing variances. Specifically, suppose that

p(yi |xi;w) =
1√
2πσi

exp

(

−(yi − wTxi)
2

2σ2
i

)

,

i.e., yi |xi ∼ N(wTxi, σ
2
i ), where the σi are fixed and known constants. Show that finding

the maximum likelihood estimate of w reduces to solving a weighted linear regression
problem. State what the λi are in terms of the σi.
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(e) Locally weighted linear regression. Suppose we want to predict the output ynew for a
new query point xnew. Consider using the weights

λi = exp

(−(xnew − xi)
2

2τ2

)

,

where τ > 0 is a fixed bandwidth parameter. Explain in English what this model is doing.
Comment on how its behavior varies with different values of τ , and especially on what
happens to the fit when τ is very large or very small.

2. Data matrix in autoregressive time series model. Suppose that z1, z2, . . . is a time series. An
autoregressive model for the time series has the form

ẑt+1 = w1zt + · · ·+ wMzt−M+1, t = M,M + 1, . . .

where M is the memory or lag of the model. An autoregressive model is also referred to as
an AR model, or an AR(M) model for a particular memory M . Here ẑt+1 is the prediction of
zt+1 made at time t (when zt, . . . , zt−M+1 are known). This prediction is a linear function of
the previous M values of the time series. With a good choice of model parameters, the AR
model can be used to predict the next value in a time series, given the current and previous
M values. This has many practical uses.

We can use least squares or linear regression to fit the parameters of an AR(M) model based
on the observed data z1, . . . , zT by minimizing the sum of squares of the prediction errors
zt+1 − ẑt+1 over t = M, . . . , T − 1, i.e.,

(zM+1 − ẑM+1)
2 + · · ·+ (zT − ẑT )

2.

(We must start the predictions at t = M , since each prediction involves the previous M time
series values, and we do not know z0, z−1, . . ..)

Find the matrix X and vector y for which ‖Xw − y‖22 gives the sum of the squares of the
prediction errors. Show that X is a Toeplitz matrix, i.e., that entries Xij with the same value
of i− j are the same. Indicate how many features and examples are in the regression.

3. Augmenting features with the average. You are fitting a regression model ŷ = xTβ + v to
data, computing the model coefficients β and v using least squares. A friend suggests adding
a new feature, which is the average of the original features. (That is, he suggests using the
new feature vector x̃ = (x,avg(x)).) He explains that by adding this new feature, you might
end up with a better model. Is this a good idea?

4. Sigmoid function. Recall that the sigmoid function is

s(x) = 1/(1 + e−x).

(a) Show that its derivative satisfies the property

s′(x) = s(x)(1− s(x)).
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(b) Show that if

log
p(y = 1 |x)
p(y = 0 |x) = wTx,

where x ∈ Rn and y ∈ {0, 1}, then

p(y = 1 |x) = s(wTx).

5. Convexity of logistic regression. Consider the log-likelihood function for logistic regression:

ℓ(w) =
N
∑

i=1

yi log s(w
Txi) + (1− yi) log(1− s(wTxi)),

where s is the sigmoid function. Show that ℓ is concave in w.

6. Generalized linear models for count and rate data. Consider a process in which events occur
independently and continuously at a constant rate. (Though not relevant to the problem, such
a process is known as a Poisson process.) It is used to model a wide variety of situations,
such as the arrival of customers at a store or incoming messages at an exchange; it can also
be used to model spatial data like locations of trees in a forest or meteor strikes of Earth.

Rather than working with the process itself, we are often interested in two particular aspects
of such processes. The number of events occurring in a fixed interval follows a Poisson
distribution, a discrete distribution given by the mass function

p(z) =
e−λλz

z!
,

with parameter λ > 0, where z is a nonnegative integer. The parameter is often known as a
rate parameter and is also the mean of the distribution. It is commonly used to model count
or rate data, such as the number of patients arriving to a hospital during business hours.

The time between events occurring is described by the exponential distribution (not to be
confused with the exponential family), a continuous distribution given by the density function

p(z) = λ exp(−λz),

with parameter λ > 0, where z ∈ R+. Here, λ is also called a rate parameter, but the mean
of the distribution is 1/λ. For example, if messages arrive independently at random with one
every s seconds on average, then the distribution of how long one must wait for a message is
exponential with mean s. The distribution often arises in waiting problems and can be used
to model, e.g., service times of agents in a system or the time until default or payment to
debtholders when modeling credit risk.

Generalized linear models with a Poisson or exponential response are also closely connected
to survival analysis and reliability engineering.

(a) Show that the Poisson distribution is in the exponential family. What is the canonical
response function for a GLM with a Poisson response (known as Poisson regression)?

(b) Show that the exponential distribution is in the exponential family. What is the canonical
response function for a GLM with an exponential response?
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7. Maximum likelihood estimation and moment matching. Suppose we have a random variable
following the exponential family

p(x; θ) = exp
(

θTϕ(x)−A(θ)
)

,

where ϕ(x) = (ϕ1(x), . . . , ϕK(x)) is given and the parameters θ ∈ RK are unknown.

(a) Given a dataset x1, . . . , xN , show that the maximum likelihood estimate θ̂ of the param-
eters satisfy the condition

∑

x

p(x; θ̂)ϕk(x) =
1

N

N
∑

i=1

ϕk(xi)

for all k, where the lefthand sum is over all x in the support of the distribution and the
righthand sum is over all data points. A shorthand for this result is that the ‘model
average’, the expected value under the fitted model, of each sufficient statistic ϕk must
equal the empirical average of the sufficient statistic found in the training data. These
are sometimes called the moment matching conditions. (We could also include h(x) in
the density above; it only slightly clutters the derivation.)

Hint. Differentiate the log-likelihood and rearrange.

(b) Suppose the distribution in question is the multinomial distribution and the sufficient
statistics are indicator functions of each outcome. Give an interpretation for the moment
matching conditions in this setting and briefly discuss its implications.

8. Kullback-Leibler divergence and maximum likelihood. The Kullback-Leibler divergence, also
called KL divergence and relative entropy, between two discrete-valued distributions p and q
is given by

KL(p ‖ q) =
∑

x

p(x) log
p(x)

q(x)
.

(Here, it is assumed that q(z) = 0 implies p(z) = 0, and that 0 log 0 = 0.) The KL divergence
is also often denoted D(p ‖ q).
The KL divergence is a measure of the ‘distance’ between two probability distributions and has
many interpretations. (We use ‘distance’ in quotes because it is not a metric. In particular, it
is not symmetric, so care must be taken to indicate which of KL(p ‖ q) or KL(q ‖ p) is meant
in a given situation.) Roughly, KL(p ‖ q) is a measure of the inefficiency of assuming that the
distribution is q (which is often a model or approximation) when the true distribution is p.

(a) Nonnegativity. Prove that KL(p ‖ q) ≥ 0, and that KL(p ‖ q) = 0 if and only if p = q.
This is known as Gibbs’ inequality or the information inequality.

Hint. Use Jensen’s inequality: For any random variable z, f(E[z]) ≤ E[f(z)] when f is
convex, with equality either when f is not strictly convex or when z is a constant, i.e.,
z = E[z] with probability 1.

(b) Chain rule. The KL divergence between two conditional distributions is given by

KL(p(x | y) ‖ q(x | y)) =
∑

y

p(y)

(

∑

x

p(x | y) log p(x | y)
q(x | y)

)

.
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Prove that

KL(p(x, y) ‖ q(x, y)) = KL(p(x) ‖ q(x)) + KL(p(y |x) ‖ q(y |x)).

(c) KL divergence and maximum likelihood. Suppose we are given a training set {x1, . . . , xN}
and let the empirical distribution be

p̃(x) =
1

N

N
∑

i=1

[xi = x].

Let P = {pθ | θ ∈ Θ} be a family of probability distributions indexed by a parameter
θ. Show that finding the maximum likelihood estimate of θ is equivalent to finding the
pθ ∈ P with minimal KL divergence from the empirical distribution p̃, i.e., that

argmin
θ∈Θ

KL(p̃ ‖ pθ) = argmax
θ∈Θ

(

N
∑

i=1

log pθ(xi)

)

.

This is sometimes referred to as the M-projection of p̃ onto P.
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