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k-means



k-means

given D = {x1,...,xn}, x; € R", group data into a few ‘clusters’

@ randomly initialize cluster centroids u1, ..., ur € R
® repeat until convergence

@ find cluster assignment for z;

¢; := argmin [|z; — p;[3
J

@® recompute cluster centroids using these assignments
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Alternating minimization

e k-means can also be viewed as alternating minimization on the
(biconvex) ‘distortion function'’

2
2

N
Ten) =3 s — e,
i=1

e results dependent on initialization, so do random restarts and pick
one with lowest distortion

e can also derive k-means as a limit of a probabilistic model



Mixture models and
the EM algorithm



Mixture of Gaussians

probabilistic model for clustering / density estimation
consider data D = {z1,...,2n}

generative model

z ~ Multinomial(¢)

i.e., each x; generated by sampling a unobserved (hidden, latent)
z; € [K] and then drawing x; from the corresponding Gaussian

presence of these latent variables is the key new wrinkle

model parameters are ¢, pi, 2



Maximum likelihood estimation

e model parameters are ¢, pg, g

e as usual, write down likelihood for w = (¢, uk, )
N
Lw) = Zlogp(mi; w)
i=1

N K
— Z log Z p(zi | 2i)p(2i)

zi=1

e this function is nonconvex due to sum over values of z;



Maximum likelihood estimation

o if z; were known, problem is easy and becomes

N N
w) = Zlogp(xi | z:) + ZIng(Zi)
i=1 i=1

e maximizing with respect to ¢, u, X gives

R o T _ YLz =gl
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similar expression for

e je., if z; were known, nearly identical to maximum likelihood
estimates in GDA (with z;'s as class labels)



EM algorithm

idea: iteratively guess the z; and then use formulas above:

@ E-step: compute p;; = p(zi = j|xi; 0,1, %)

® M-step: use formulas above with p;; in place of [z; = j]

E-step computes posterior probability of z;'s, given data and current
setting of parameters; ‘soft guesses' for values of z;

M-step is maximum likelihood estimation, but there is uncertainty
around the value of the z; and that's incorporated in estimates

a 'soft’ version of k-means in this context
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EM algorithm

in general, EM algorithm is standard approach to maximum
likelihood estimation with latent variable models

data D = {z1,...,zn}
want to fit model p(x, z) with z hidden

likelihood is given by

N N
l(w) = Zlogp(x; w) = ZlogZp(x, z;w)
i=1 i=1 z

often the case that maximum likelihood estimation of x would be
easy if z were known, so alternate the two steps
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EM algorithm

e EM algorithm can be motivated and analyzed in various ways
o iteratively lower bound ¢, then maximize that lower bound

e for each i, let ¢; be a distribution over z's

N N
2 logpla) = 3 log ploz)
i=1 i=1 i

_ Zlongz Zl xz,Zz

qz zl

Y (e g s

=1 z;

Y

by Jensen's inequality

11



EM algorithm

e previous formula gives lower bound for any ¢;; ideally, have the lower
bound be tight (inequality holds with equality) for current value of w

e can show that this is the case when ¢;(z;) = p(z; | z;; w); it suffices
that ¢;(2;) o< p(wy, 2i;w), so

P, 255 w)
alz) = >, p(ws, zw)
p(xs, 25 W)
p(xi;w)
= p(zi|xiw)

e E-step (above): obtain lower bound (has form of an expectation) on

14

e M-step: maximize this lower bound with respect to w

12



EM algorithm

e can show that this algorithm converges because it monotonically
improves the log likelihood

e ie. can show ¢(wF) < ¢(wk*1)
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EM algorithm

e EM algorithm can also be viewed as coordinate ascent on

J(g,w) = qui(zi)bg%

=1 z;
e E-step: maximization with respect to ¢

o M-step: maximization with respect to w
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Factor analysis

fitting Gaussian mixture model to data z1,...,zy € R™ assumes
enough data (N >> n) to discern this structure

if n > N, cannot even fit a single Gaussian
here, data points span low-dimensional subspace of R", so MLEs of
the parameters result in degenerate Gaussian (singular covariance

matrix) that puts all mass in affine space spanned by the data

consider models that explicitly handle low rank structure
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Factor analysis

e consider generative model p(z, z) given by

z ~ N(0,I)
xlz ~ N(p+ Az, 0)

where € R", A € R™** ¥ ¢ R™" diagonal
e 1 observed, z latent

e low dimensional structure: k < n, i.e., data is generated by affine
transformation of k-dimensional Gaussian (plus noise)
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Factor analysis

p(x, z) is Gaussian, and need to find its mean and covariance from
the generative model

ideally, would want to maximize log (marginal) likelihood of data,
using marginal distribution of z, but this function is hard to optimize

so, use EM

— E-step: compute ¢;(2:) = p(zi | z;) (also Gaussian)
— M-step: maximize lower bound

al (x4, 2:)
E :/ qi(zi)logud%
— /., qi(zi)

involves some messy algebra, but can obtain closed form solutions
for all these subproblems (matrix computations)
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Principal components analysis



Dimensionality reduction

e model data x € R™ as approximately lying in some k-dimensional
subspace, with k < n

e has many different use cases

— data compression

— data visualization

— noise reduction

— preprocessing for supervised learning
— feature discovery

— structure discovery



Principal components analysis

e let D={zy,...,zny}, withz; ER", n < N

e rescale data to have mean zero and unit variance
@ replace z; with z; — (1/N) >, x5
@ replace ) with z! /o;, where o; = (1/N) Y, (2])?
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Principal components analysis

several ways to motivate PCA
select directions on which to project points to maximize variance
compute top k eigenvectors of empirical covariance matrix

pick k-dimensional basis so approximation error of projecting data
onto it is minimized
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Principal components analysis

given D, find unit vector u such that projection of D onto direction
4 has maximum variance

T

length of projection of x onto w is x* u, so solve

maximize (1/N)ZZ\L1(3%TU)2
subject to  |lu2 =1

objective can be rewritten as quadratic form u” u, where

is empirical covariance matrix of (preprocessed) D

so solution of problem above is computing principal eigenvector of X
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Principal components analysis

in general, find top k eigenvectors uy, ..., u; of X
these give an orthonormal basis for R*
compute rank k approximation to x; as

yi = (ulzg, .. ul xy)

choice of u; maximizes >, ||v; /|3
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Topic models



Topic models

topic models: methods for automatically organizing, understanding,
searching, and summarizing large electronic archives

— discover hidden themes that pervade the collection
— annotate documents with those themes

— use annotations to organize, summarize, and search texts
unsupervised generative latent variable models of document structure

originally introduced by Blei, Ng, and Jordan (2003); much
subsequent work by Blei and collaborators, among many others
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Topic models

idea: documents composed of multiple topics
each topic is a distribution over words
each document is a mixture of corpus-wide topics

each word is drawn from one of these topics
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Latent Dirichlet allocation

generative model p(0, z,w | a, )

0 ~ Dirichlet(a)
Zn ~ Multinomial(f), n=1,...,N
wp, ~ Multinomial(3,,), n=1,...,N

estimate parameters by, e.g., maximizing log-likelihood

D
(o, 8) =" logp(w |, 8)
d=1

where wi, ..., wp are documents (training set)
want to compute posterior of latent variables

conceptually, use EM (but need approximations here)
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A 100 topic model of Science 1980-2000

sound quantum brain computer ice
speech laser memory data climate
acoustic light human information ocean
language optical visual problem sea
sounds electron | cognitive | computers | temperature
stars research | materials fossil volcanic
universe national organic species years
galaxies science | molecules evolution fig
astronomers new molecular birds deposits
star funding polymer | evolutionary rocks

26



Topic proportions in documents
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Variants and applications

finding similar documents

measuring scholarly impact (detect influential articles)
discover evolution of topics over time

discover correlations between topics

annotate images with captions

characterizing political decisions

organize and browse large document collections
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Model Evolution of Topics over Time

1880 1890 1900 1910 1920 1930 1940
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam electrical engineering room water mercury laboratory
two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure
iron system engineer made made made small
battery motor room gas laboratary gas mercury
wire engine feet tube mercury small gas

1950

1970 90 00

ube air materials devices
apparatus heat high device
glass temperature power power materials
air air system current current
chamber heat temperature applications gate
instrument chamber chamber technology high
small power high devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
rubber control design large heat technology
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Visualizing Trends Within Topics
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Model Connections Between Topics

stars
astronomers

reaction

reactions universe
women molecule galaxies
universities molecules
students ansition state,

education

santosghare

gancantratang,

researchers
protein
found



Candy

Sunset

People
& Fish

Matching Words and Pictures
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Matching Words and Pictures

8
True caption

True caption True caption True caption
market people scotland water bridge sky water sky tree water
Corr-LDA Corr-LDA Corr-LDA Corr-LDA
people market pattern textile display scotland water flowers hills tree

sky water buildings people mountain  tree water sky people buildings

True caption

True caption

True caption True caption
birds tree fish reefs water ‘mountain sky tree water clouds jet plane
Corr-LDA Corr-LDA Corr-LDA Corr-LDA
birds nest leaves branch tree fish water ocean tree coral

sky water tree mountain people sky plane jet mountain clouds
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