
CS 228T Problem Set 2

April 22, 2011

Instructions. The lengths listed for each problem are suggested maximum lengths for typed so-
lutions, not minimum; solving the problems fully in less space is possible. Some questions may
be related to published research papers, so do not refer to any outside sources to complete this
assignment, in accordance with the honor code. If you work in groups, indicate in your solutions
who you worked with.

1. Inference with the convex-concave procedure (13 points, 2 pages). A main difficulty with using
loopy belief propagation to solve the Bethe approximation to the exact inference problem is
that it often has trouble converging. In this question, we explore the use of a different
algorithm that is guaranteed to converge.

Sequential convex programming (SCP) refers to a class of algorithms for nonconvex optimiza-
tion that involves solving a sequence of convex approximations to the nonconvex problem.
We consider a particular SCP algorithm for problems in the form

minimize f(x)− g(x)
subject to x ∈ C,

where f and g are convex functions and C is a convex set. Problems of this form, sometimes
called ‘difference of convex’ optimization problems, need not be convex because the objective
function involves the sum of a convex and a concave function.

The convex-concave procedure (CCCP) approaches such problems by replacing the objective
with the following convex upper bound at iteration k:

f̂k(x) = f(x)− g(xk)−∇g(xk)T (x− xk),

i.e., by linearizing the concave term −g at xk. The algorithm can then be written

xk+1 := argmin
x∈C

f̂k(x) = argmin
x∈C

(
f(x)−∇g(xk)Tx

)
.

(a) Let G = (V,E) be a cluster graph for a graphical model with factors Φ. Derive a
CCCP-based algorithm for solving the approximate inference problem

maximize
∑

i∈V Eβi [logψi] +
∑

i∈V H(βi)−
∑

(i,j)∈E H(µij)

subject to q ∈ L(G),

where q = {βi}i∈V ∪ {µij}(i,j)∈E and L(G) is the local consistency polytope for G.
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(b) It is possible to apply CCCP in a more refined way than simply linearizing an entire
summation in the problem above. For example, suppose G is the Bethe cluster graph for
factors Φ and variables X1, . . . , Xn. Let βφ denote the belief for the cluster corresponding
to factor φ, and let βi be the belief for variable Xi. In this case, the problem above can
be rewritten

maximize
∑

φ∈Φ Eβφ [log φ] +
∑

φ∈ΦH(βφ)−
∑n

i=1(di − 1)H(βi)

subject to q ∈ L(G),

where di is the number of factors with Xi in scope. In other words, this is an alternate
way of expressing the Bethe approximation.

Consider the particular instance of this problem corresponding to the Bethe cluster graph
for the pairwise Markov random field given by

A B

C D

Explain how we can use CCCP to solve this problem instance while only approximating
a single term. (For example, linearize only −H(X) for some single variable X.)

2. Structured variational methods (18 points, 2 pages). Consider the structured variational
approximation of equation 11.61. As discussed, to execute the update, we need to collect the
expectation of several factors, and each of these requires that we compare expectations given
different assignments to the factor of interest.

Specifically, consider the case of the chain-structured variational approximation for the n×n
grid, as illustrated in Figure 11.17a.

Show how we can use a dynamic programming algorithm to reuse computation so as to
evaluate these asynchronous updates more efficiently. (Here, ‘asynchronous’ refers to the fact
that we update a single ψj at a time, then use its updated values when we move on to the
next step, which involves updating some ψk for k 6= j.)

(This problem is based on exercise 11.27.)

3. Cluster variational methods (18 points, 2 pages). Do exercise 11.29.

4. Nonconvexity of mean field (10 points, 1 page). Consider the Ising model over the undirected
graph G = (V,E).

(a) Let Q be the feasible set for the näıve mean field problem, i.e., the set of fully factored
distributions. Using the convex hull characterization of the marginal polytope from
question 6 on the first problem set, show that Q is a subset of the marginal polytope
containing all its extreme points.

(b) Use part (a) to show that the mean field problem is nonconvex.

5. Graph cuts for MAP inference (16 points, 3 pages).

(a) Do exercise 13.14.

2



(b) Do exercise 13.15.

6. Suboptimality bounds for α-expansion (13 points, 2 pages). Let X be a pairwise metric Markov
random field over a graph G = (V,E). Suppose that the variables are nonbinary and that the
node potentials are nonnegative. Let A denote the set of labels for each X ∈ X . Though it is
not possible to (tractably) find the globally optimal assignment x? in general, the α-expansion
algorithm provides a method for finding assignments x̂ that are locally optimal with respect
to a large set of transformations, i.e., the possible α-expansion moves.

Despite the fact that α-expansion only produces a locally optimal MAP assignment, it is
possible to prove that the energy of this assignment is within a known factor of the energy
of the globally optimal solution x?. In fact, this is a special case of a more general principle
that applies to a wide variety of algorithms, including max-product belief propagation and
more general move-making algorithms: If one can prove that the solutions obtained by the
algorithm are ‘strong local minima’, i.e., local minima with respect to a large set of potential
moves, then it is possible to derive bounds on the (global) suboptimality of these solutions,
and the quality of the bounds will depend on the nature of the moves considered. (There is
a precise definition of ‘large set of moves’.)

Consider the following approach to proving the suboptimality bound for α-expansion.

(a) Let x̂ be a local minimum with respect to expansion moves. For each α ∈ A, let

V α = {s ∈ V | x?s = α},

i.e., the set of nodes labelled α in the global minimum. Let x′ be an assignment that is
equal to x? on V α and equal to x̂ elsewhere; this is an α-expansion of x̂. Verify that

E(x?) ≤ E(x̂) ≤ E(x′).

(b) Building on the previous part, show that

E(x̂) ≤ 2cE(x?),

where

c = max
(s,t)∈E

(
maxα6=β εst(α, β)

minα 6=β εst(α, β)

)
and E denotes the energy of an assignment.

Hint. Think about where x′ agrees with x̂ and where it agrees with x?.

7. Global optimality and max-product belief propagation (12 points, 2 pages). Do exercise 13.11.
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